
【推荐】数学教学计划集合7篇
时间过得可真快,从来都不等人,我们的工作又将迎来新的进步,是时候开始写计划了。我们该怎么拟定计划呢?下面是小编为大家整理的数学教学计划7篇,供大家参考借鉴,希望可以帮助到有需要的朋友。
数学教学计划 篇1教学内容:
第三单元(图形与变换)教科书第37~47页的内容。
第一课时 锐角和钝角
教学内容 :
教科书第38~39页的内容。 教学目标:
1、 进一步巩固学生对“角”“边”“顶点”“直角”的认识,熟悉比较角的大小。力求学生能够通过多种方法实现大小的比较。
2、 新课的导入。在比较中提示一种角比直角大,还有一种角比直角小,从而揭示出锐角和钝角的概念。力求以发挥学生的创新能力为主导思想。在运用板书画一画,学生读一读的方法加深对锐角和钝角的认识、理解。
3、 实践练习,注重学生知识的的形成过程,从判断推理、寻找发现、到小组合作的画一画、拼一拼、折一折的实践练习,在充分展示学生个体的优势的同时,注重学生的动手操作能力和合作精神的培养。在合作的过程中考察学生任务、时间的合理统筹。
4、 整个过程体现学生在活动中学习,在活动中探究的乐趣。充分体现生活数学、快乐数学。
教学重点:
1、认识锐角和钝角,并理解与直角的关系。
2、在认识理解的基础上,能够动手折叠或正确的画出锐角和钝角。
3、围绕生活,通过比赛的方式,巩固理解锐角和钝角。
教具准备:三角尺,纸张
学具准备:学生三角尺,纸张
教学过程:
一、引导入课,复习旧知。
1、复习内容。引导学生回忆关于角的知识。
出示角。根据图例回答这是一个( 角 )
角是怎么组成?请你在图上填出“边”“顶点”“边”
出示直角。这是一个什么?(直角)
除了这些,你还知道了哪些知识?小组讨论汇报
2、比较两个角的大小。
两组:一组是移动后完全重合,即相等;一组是移动后不能完全重合,即不等。(第二组可请学生指出哪个角大,哪个角小)
3、比较锐角和钝角的大小(注意,此处不揭示出两个角的概念,只当作两个普通的角出现)。采用借助直角的方法完成比较。
1、出示上海杨浦大桥的情境图,请大家认真观察,在这幅图中,你们能找出角吗?指一指它在什么地方?
2、采用回忆的方式,进一步的加深对新知的认识理解。并进行板书。
①、一个是锐角,一个是钝角。(板书“锐角”和“钝角”)
②、说一说锐角与直角的关系。(在锐角的下方板书“比直角小”);在回忆钝角与直角的关系。(在钝角的下方板书“比直角大”)
③、按照学过的方法请学生分别在“锐角”和“钝角”字样上方板演两个直角。
④、根据概念用不同色彩的笔在一个直角上画出锐角,在另一个直角上画出钝角。以加深对锐角和钝角的理解。
⑤、读一读,加深记忆。并在练习本上分别画一个锐角和钝角,教师巡视。
⑥、抢答。教师根据锐角和钝角概念的不同说法进行提问。活跃课堂气氛。
例:A、锐角比直角( ) B、比直角大的是( )
三、巩固实践阶段,将数学知识与生活相联系,实行小组活动教学,在合作中完成。
1、引导学生动手操作。
(1) 请大家用事先准备好的纸片折出一个直角。
(2) 请在大家再折出一个锐角和一个钝角。
(3) 请大家用直尺和三角板画出一个锐角、一个钝角和一个直角。
2、自由活动:找一找!
老师带我你们去小海龟的家。瞧!小海龟的家都是由我们学习过的图形组成的,有锐角,钝角,还有直角。小朋友们仔细看一看,哪些角是直角?哪些角是锐角?哪些角是钝角?并说出原因。
四、总结,深化阶段。
①、小组内讲解什么样的角是锐角?什么样角是钝角?
②、体会,在我们做早操时,经常有两臂的运动,想一想,两臂伸展到什么程度时是锐角,什么程度时是钝角,什么时候又是直角。
五、课堂练习作业p39第1、2、3题,小组校对
第二课时 平移和旋转
教学内容:
教科书第41~43页
教学目标:
1、通过生活情景,让学生初步感知平移和旋转现象;让学生通过观察、分类、对比,初步了解物体的平移和旋转的变换特征;初步会判断图形的平移和旋转。
2、会在方格纸上平移简单的图形。通过观察、动手操作,培养学生的观察能力和解决问题的能力。
教学重、难点:能正确说出图形平移的距离。
教具准备:、学具。
教学过程:
一、情景导入
二、新授课
1、感知平移与旋转现象
(1)看一看,说一说游乐园里有哪些游乐项目?
(2)这些游乐项目是怎样运动的?
(3)根据游乐项目不同的运动,可以分几类类?怎么分的?
(4)自己先分一分,有什么困难再在四人小组里交流一下。
2、初步了解平移和旋转的特征。
(1)说一说分类的理由
A:平移:火车沿笔直的轨道行驶、缆车沿笔直的索道滑行、火箭升空等物体都是沿着一条直线运动的,这种运动就叫做什么?
B:旋转:大风车、摩一轮等都是绕着一个点或一个轴为中心做圆周运动的,这种运动叫做什么?
(2)举生活中的实例,进一步了解平移、旋转特征。
(3)用学具在桌面做平移和旋转运动。
小结:通过观察,举生活中例子,初步感知物体平移现象和旋转现象,了解平移和旋转的特征。
3、练习(出示P41页方格图)
二、综合练习
1、 下列现象哪些是平移?哪些是旋转?(课本P43页第三题)
2、欣赏生活中的平移和旋转现象。
全课总结:今天这节课你学会哪些新知识?还有什么问题?用哪些方法学会的这些新知识。
[设计意图]鼓励多种形式的学习,在先前学习的基础上开拓学生的思路,锻炼学生的自学能力。
三、课后活动 应用平移和旋转做运动。
第三课时 剪一剪
教学内容:
教科书第46页
教学目标:
1、让学生剪出连续的对称图案。
2、培养学生的形象思维,帮助学生建立初步的空间观念。
3、培养学生边思考边操作的良好学习品质。
4、让学生剪出漂亮的图案,培养学生的审美能力。
教学重、 ……此处隐藏5727个字……安排
2课时
教学过程
第1课时
作者:尚大志
导入新课
思路1.我们知道,实数有加法运算,两个实数可以相加,例如5+3=8.类比实数的加法运算,集合是否也可以“相加”呢?教师直接点出课题.
思路2.请同学们考察下列各个集合,你能说出集合C与集合A,B之间的关系吗?
(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6};
(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.
引导学生通过观察、类比、思考和交流,得出结论.教师强调集合也有运算,这就是我们本节课所要学习的内容.
思路3.(1)①如图1甲和乙所示,观察两个图的阴影部分,它们分别同集合A、集合B有什么关系?
图1
②观察集合A,B与集合C={1,2,3,4}之间的关系.
学生思考交流并回答,教师直接指出这就是本节课学习的课题:集合的基本运算.
(2)①已知集合A={1,2,3},B={2,3,4},写出由集合A,B中的所有元素组成的集合C.
②已知集合A={x|x>1},B={x|x<0},在数轴上表示出集合A与B,并写出由集合A与B中的所有元素组成的集合C.
推进新课
新知探究
提出问题
(1)通过上述问题中集合A,B与集合C之间的关系,类比实数的加法运算,你发现了什么?
(2)用文字语言来叙述上述问题中,集合A,B与集合C之间的关系.
(3)用数学符号来叙述上述问题中,集合A,B与集合C之间的关系.
(4)试用Venn图表示A∪B=C.
(5)请给出集合的并集定义.
(6)求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?
请同学们考察下面的问题,集合A,B与集合C之间有什么关系?
①A={2,4,6,8,10},B={3,5,8,12},C={8};
②A={x|x是国兴中学20xx年9月入学的高一年级女同学},B={x|x是国兴中学20xx年9月入学的高一年级男同学},C={x|x是国兴中学20xx年9月入学的高一年级同学}.
(7)类比集合的并集,请给出集合的交集定义,并分别用三种不同的语言形式来表达.
活动:先让学生思考或讨论问题,然后再回答,经教师提示、点拨,并对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路,主要引导学生发现集合的并集和交集运算并能用数学符号来刻画,用Venn图来表示.
讨论结果:(1)集合之间也可以相加,也可以进行运算,但是为了不和实数的运算相混淆,规定这种运算不叫集合的加法,而是叫做求集合的并集.集合C叫集合A与B的并集.记为A∪B=C,读作A并B.
(2)所有属于集合A或属于集合B的元素组成了集合C.
(3)C={x|x∈A,或x∈B}.
(4)如图1所示.
(5)一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集.其含义用符号表示为A∪B={x|x∈A,或x∈B},用Venn图表示,如图1所示.
(6)集合之间还可以求它们的公共元素组成的集合,这种运算叫求集合的交集,记作A∩B,读作A交B.①A∩B=C,②A∪B=C.
(7)一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.
其含义用符号表示为:
A∩B={x|x∈A,且x∈B}.
用Venn图表示,如图2所示.
图2
应用示例
例1 集合A={x|x<5 b="{x|x">0},C={x|x≥10},则A∩B,B∪C,A∩B∩C分别是什么?
变式训练
1.设集合A={x|x=2n,n∈N*},B={x|x=2n,n∈N},求A∩B,A∪B.
解:对任意m∈A,则有m=2n=2?2n-1,n∈N*,因n∈N*,故n-1∈N,有2n-1∈N,那么m∈B,即对任意m∈A有m∈B,所以A?B.
而10∈B但10 A,即A B,那么A∩B=A,A∪B=B.
2.求满足{1,2}∪B={1,2,3}的集合B的个数.
解:满足{1,2}∪B={1,2,3}的集合B一定含有元素3,B={3};还可含1或2其中一个,有{1,3},{2,3};还可含1和2,即{1,2,3},那么共有4个满足条件的集合B.
3.设集合A={-4,2,a-1,a2},B={9,a-5,1-a},已知A∩B={9},求a.
解:∵A∩B={9},则9∈A,a-1=9或a2=9.
∴a=10或a=±3.
当a=10时,a-5=5 ,1-a=-9;
当a=3时,a-1=2不合题意;
当a=-3时,a-1=-4不合题意.
故a=10.此时A={-4,2,9,100},B={9,5,-9},满足A∩B={9}.
4.设集合A={x|2x+1<3},B={x|-3
A.{x|-3
C.{x|x>-3} D.{x|x<1}
解析:集合A={x|2x+1<3}={x|x<1},
观察或由数轴得A∩B={x|-3
答案:A
例2 设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0,a∈R},若A∩B=B,求a的值.
活动:明确集合A,B中的元素,教师和学生共同探讨满足A∩B=B的集合A,B的关系.集 合A是方程x2+4x=0的解组成的集合,可以发现,B?A,通过分类讨论集合B是否为空集来求a的值.利用集合的表示 法来认识集合A,B均是方程的解集,通过画Venn图发现集合A,B的关系,从数轴上分析求得a的值.
解:由题意得A={-4,0}.
∵A∩B=B,∴B?A.
∴B= 或B≠ .
当B= 时,即关于x的方程x2+2(a+1)x+a2-1=0无实数解,
则Δ=4(a+1)2-4(a2-1)<0,解得a
当B≠ 时,若集合B仅含有一个元素,则Δ=4(a+1)2-4(a2-1)=0,解得a=-1,
此时,B={x|x2=0}={0}?A,即a=-1符合题意.
若集合B含有两个元素,则这两个元素是-4,0,
即关于x的方程x2+2(a+1)x+a2-1=0的解是-4,0.
则有-4+0=-2(a+1),-4×0=a2-1.
解得a=1,则a=1符合题意.
综上所得,a=1或a≤-1.